skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Donoughe, Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo’s periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. InDrosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricketGryllus bimaculatushas a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation inG. bimaculatusembryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements inD. melanogastercannot explain the dynamics ofG. bimaculatusnuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbedG. bimaculatusembryos, and of embryos physically manipulated to have atypical nuclear densities. 
    more » « less
  2. The number of offspring an organism can produce is a key component of its evolutionary fitness and life history. Here we perform a test of the hypothesized trade-off between the number and size of offspring using thousands of descriptions of the number of egg-producing compartments in the insect ovary (ovarioles), a common proxy for potential offspring number in insects. We find evidence of a negative relationship between egg size and ovariole number when accounting for adult body size. However, in contrast to prior claims, we note that this relationship is not generalizable across all insect clades, and we highlight several factors that may have contributed to this size-number trade-off being stated as a general rule in previous studies. We reconstruct the evolution of the arrangement of cells that contribute nutrients and patterning information during oogenesis (nurse cells), and show that the diversification of ovariole number and egg size have both been largely independent of their presence or position within the ovariole. Instead, we show that ovariole number evolution has been shaped by a series of transitions between variable and invariant states, with multiple independent lineages evolving to have almost no variation in ovariole number. We highlight the implications of these invariant lineages on our understanding of the specification of ovariole number during development, as well as the importance of considering developmental processes in theories of life-history evolution. 
    more » « less
  3. Insect wings are typically supported by thickened struts called veins. These veins form diverse geometric patterns across insects. For many insect species, even the left and right wings from the same individual have veins with unique topological arrangements, and little is known about how these patterns form. We present a large-scale quantitative study of the fingerprint-like “secondary veins.” We compile a dataset of wings from 232 species and 17 families from the order Odonata (dragonflies and damselflies), a group with particularly elaborate vein patterns. We characterize the geometric arrangements of veins and develop a simple model of secondary vein patterning. We show that our model is capable of recapitulating the vein geometries of species from other, distantly related winged insect clades. 
    more » « less